- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与椭圆的位置关系
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
, 过点
的直线
:
与椭圆
交于M、N两点(M点在N点的上方),与
轴交于点E.
(1)当
且
时,求点M、N的坐标;
(2)当
时,设
,
,求证:
为定值,并求出该值;
(3)当
时,点D和点F关于坐标原点对称,若△MNF的内切圆面积等于
,求直线
的方程.







(1)当


(2)当




(3)当



过椭圆
右焦点F且斜率为
的直线l交椭圆于A,B两点,M为弦AB的中点,直线OM与椭圆相交,其中一个交点为C点,若
(λ>0),则实数λ的值为( )



A.![]() | B.![]() | C.![]() | D.![]() |
已知P为椭圆C:
上一个动点,F1、F2是椭圆C的左、右焦点,O为坐标原点,O到椭圆C在P点处的切线距离为d,若
,则d=__________.


已知椭圆
,定义椭圆
上的点
的“伴随点”为
.
(1)求椭圆
上的点
的“伴随点”
的轨迹方程;
(2)如果椭圆
上的点
的“伴随点”为
,对于椭圆
上的任意点
及它的“伴随点”
,求
的取值范围;
(3)当
,
时,直线
交椭圆
于
,
两点,若点
,
的“伴随点”分别是
,
,且以
为直径的圆经过坐标原点
,求
的面积.





(1)求椭圆



(2)如果椭圆







(3)当













已知直线L: y=x+m与抛物线y2=8x交于A、B两点(异于原点),
(1)若直线L过抛物线焦点,求线段 |AB|的长度;
(2)若OA⊥OB ,求m的值;
(1)若直线L过抛物线焦点,求线段 |AB|的长度;
(2)若OA⊥OB ,求m的值;
已知椭圆
:
过点
与点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
,
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.




(1)求椭圆

(2)设直线










已知椭圆
:
的左、右焦点分别为
,右顶点为
,且
过点
,圆
是以线段
为直径的圆,经过点
且倾斜角为
的直线与圆
相切.
(1)求椭圆
及圆
的方程;
(2)是否存在直线
,使得直线
与圆
相切,与椭圆
交于
两点,且满足
?若存在,请求出直线
的方程,若不存在,请说明理由.











(1)求椭圆


(2)是否存在直线






