- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与椭圆的位置关系
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
、
是椭圆
的焦点,
是椭圆上一点,直线
.
(1)求△
的周长;
(2)若直线
与椭圆相切,求
的值;
(3)当
时,直线
与椭圆相交于
、
两点,求弦长
.





(1)求△

(2)若直线


(3)当





已知椭圆
:
的右焦点为
,上顶点为
,直线
的斜率为
,且原点到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若不经过点
的直线
:
与椭圆
交于
两点,且与圆
相切.试探究
的周长是否为定值,若是,求出定值;若不是,请说明理由.








(1)求椭圆

(2)若不经过点







设椭圆
,离心率
,短轴
,抛物线顶点在原点,以坐标轴为对称轴,焦点为
,
(1)求椭圆和抛物线的方程;
(2)设坐标原点为
,
为抛物线上第一象限内的点,
为椭圆是一点,且有
,当线段
的中点在
轴上时,求直线
的方程.




(1)求椭圆和抛物线的方程;
(2)设坐标原点为







在直角坐标系
中,已知椭圆
:
的离心率是
,斜率不为0的直线
:
与
相交于
、
两点,与
轴相交于点
.
(1)若
、
分别是
的左、右焦点,当
经过
且
时,求
的值;
(2)试探究,是否存在点
,使得
?若存在,请写出满足条件的
、
的关系式;若不存在,说明理由.











(1)若







(2)试探究,是否存在点




已知椭圆
的左焦点为
,设
,
是椭圆
的两个短轴端点,
是椭圆
的长轴左端点.
(1)当
时,设点
,
,直线
交椭圆
于
,且直线
、
的斜率分别为
,
,求
的值;
(2)当
时,若经过
的直线
与椭圆
交于
,
两点,
为坐标原点,求
与
的面积之差的最大值.







(1)当











(2)当








