- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与椭圆的位置关系
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
(
),过原点的两条直线
和
分别与
交于点
、
和
、
,得到平行四边形
.
(1)若
,
,且
为正方形,求该正方形的面积
.
(2)若直线
的方程为
,
和
关于
轴对称,
上任意一点
到
和
的距离分别为
和
,证明:
.
(3)当
为菱形,且圆
内切于菱形
时,求
,
满足的关系式.











(1)若




(2)若直线












(3)当





已知椭圆
:
(
),过原点的两条直线
和
分别与
交于点
、
和
、
,得到平行四边形
.
(1)当
为正方形时,求该正方形的面积
.
(2)若直线
和
关于
轴对称,
上任意一点
到
和
的距离分别为
和
,当
为定值时,求此时直线
和
的斜率及该定值.
(3)当
为菱形,且圆
内切于菱形
时,求
,
满足的关系式.











(1)当


(2)若直线












(3)当





设直线
与抛物线
交于
两点,与椭圆
交于
两点,设直线

(
为坐标原点)的斜率分别为


,若
.
(1)证明:直线
过定点,并求出该定点的坐标;
(2)是否存在常数
,满足
?并说明理由.














(1)证明:直线

(2)是否存在常数


椭圆
的中心在坐标原点,焦点
在
轴上,过坐标原点的直线
交
于
两点,
,
面积的最大值为
(1)求椭圆
的方程;
(2)
是椭圆上与
不重合的一点,证明:直线
的斜率之积为定值;
(3)当点
在第一象限时,
轴,垂足为
,连接
并延长交
于点
,求
的面积的最大值.









(1)求椭圆

(2)



(3)当点






