- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知曲线M:
的左、右顶点分别为A,B,设P是曲线M上的任意一点.
(1)当P异于A,B时,记直线PA、PB的斜率分别为
、
则
是否为定值,请说明理由.
(2)已知点C在曲线M长轴上(异于A、B两点),且
的最大值为7,求点C的坐标.

(1)当P异于A,B时,记直线PA、PB的斜率分别为



(2)已知点C在曲线M长轴上(异于A、B两点),且

已知椭圆
:
的离心率为
,焦距为
,抛物线
:
的焦点
是椭圆
的顶点.
(1)求
与
的标准方程;
(2)
上不同于
的两点
,
满足
,且直线
与
相切,求
的面积.










(1)求


(2)








已知椭圆
的左、右焦点为
、
.
(1)求以
为焦点,原点为顶点的抛物线方程;
(2)若椭圆
上点
满足
,求
的纵坐标
;
(3)设
,若椭圆
上存在两个不同点
、
满足
,证明:直线
过定点,并求该定点的坐标.



(1)求以

(2)若椭圆





(3)设





