刷题首页
题库
高中数学
题干
已知椭圆
的左、右焦点为
、
.
(1)求以
为焦点,原点为顶点的抛物线方程;
(2)若椭圆
上点
满足
,求
的纵坐标
;
(3)设
,若椭圆
上存在两个不同点
、
满足
,证明:直线
过定点,并求该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-20 02:26:35
答案(点此获取答案解析)
同类题1
已知椭圆
的左右焦点分别为
,若椭圆上一点
满足
,过点
的直线
与椭圆
交于两点
.
(1)求椭圆
的方程;
(2)过点
作
轴的垂线,交椭圆
于
,求证:存在实数
,使得
.
同类题2
已知椭圆
的离心率为
,短轴长为4.
(1)求椭圆
的方程;
(2)过点
作两条直线,分别交椭圆
于
两点(异于
),当直线
,
的斜率之和为4时,直线
恒过定点,求出定点的坐标.
同类题3
已知离心率为
的椭圆
的右焦点与抛物线
的焦点
重合,且点
到
的准线的距离为2.
(1)求
的方程;
(2)若直线
与
交于
两点,与
交于
两点,且
(
为坐标原点),求
面积的最大值.
同类题4
已知动点
满足:
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设过点
的直线
与曲线
交于
两点,点
关于
轴的对称点为
(点
与点
不重合),证明:直线
恒过定点,并求该定点的坐标.
同类题5
已知
是椭圆
上关于原点
对称的任意两点,且点
都不在
轴上.
(1)若
,求证: 直线
和
的斜率之积为定值;
(2)若椭圆长轴长为
,点
在椭圆
上,设
是椭圆上异于点
的任意两点,且
.问直线
是否过一个定点?若过定点,求出该定点坐标;若不过定点,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题