- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
与直线
交于
不同两点分别过点
、点
作抛物线
的切线,所得的两条切线相交于点
.
(Ⅰ)求证
为定值:
(Ⅱ)求
的面积的最小值及此时的直线
的方程.







(Ⅰ)求证

(Ⅱ)求


如图,抛物线
上一点
(点
不与原点
重合)作抛物线
的切线
交
轴于点
,点
是抛物线
上异于点
的点,设
为
的重心(三条中线的交点),直线
交
轴于点
.

(Ⅰ)设点
求直线
的方程:
(Ⅱ)求
的值









是抛物线








(Ⅰ)设点


(Ⅱ)求

过点
任作一直线交抛物线
于
两点,过
两点分别作抛物线的切线
.
(Ⅰ)记
的交点
的轨迹为
,求
的方程;
(Ⅱ)设
与直线
交于点
(异于点
),且
,
.问
是否为定值?若为定值,请求出定值.若不为定值,请说明理由.





(Ⅰ)记




(Ⅱ)设







已知点
是抛物线
:
(
)上一点,
为坐标原点,若
是以点
为圆心,
的长为半径的圆与抛物线
的两个公共点,且
为等边三角形,则
的值是_______ .











在平面直角坐标系中,已知点
,直线
,动直线
垂直
于点
,线段
的垂直平分线交
于点
,设点
的轨迹为
.
(Ⅰ)求曲线
的方程;
(Ⅱ)以曲线
上的点
为切点做曲线
的切线
,设
分别与
、
轴交于
两点,且
恰与以定点
为圆心的圆相切.当圆
的面积最小时,求
与
面积的比.










(Ⅰ)求曲线

(Ⅱ)以曲线












