- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C的离心率为
,长轴的左、右端点分别为
,
.

(1)求椭圆C的方程;
(2)设直线
与椭圆C交于P,Q两点,直线
,
交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.




(1)求椭圆C的方程;
(2)设直线



焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.





(1)求椭圆的标准方程;
(2)若点M为




如图,设椭圆
两顶点
,短轴长为4,焦距为2,过点
的直线
与椭圆交于
两点.设直线
与直线
交于点
.

(1)求椭圆的方程;
(2)求线段
中点
的轨迹方程;
(3)求证:点
的横坐标为定值.









(1)求椭圆的方程;
(2)求线段


(3)求证:点

设
为椭圆
的两个焦点,点P在C上,e为C的离心率.若
是等腰直角三角形,则
________;若
是等腰钝角三角形,则e的取值范围是________.







如图,在平面直角坐标系
中,椭圆
:
上的动点到一个焦点的最远距离与最近距离分别是
与
,
的左顶点为
与
轴平行的直线与椭圆
交于
、
两点,过
、
两点且分别与直线
、
垂直的直线相交于点
.

(1)求椭圆
的标准方程;
(2)证明点
在一条定直线上运动,并求出该直线的方程;
(3)求
面积的最大值.

















(1)求椭圆

(2)证明点

(3)求
