- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的右焦点为
,左,右顶点分别为
,离心率为
,且过点
.
(1)求
的方程;
(2)设过点
的直线
交
于
,
(异于
)两点,直线
的斜率分别为
.若
,求
的值.





(1)求

(2)设过点










已知椭圆
的右焦点为
,且点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)过椭圆
上异于其顶点的任意一点Q作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在x轴,y轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆E过
,且椭圆
上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.



(1)求椭圆C的标准方程;
(2)过椭圆






(3)若






已知椭圆
,且椭圆C上恰有三点在集合
中.
(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足
,试探究:点O到直线AB的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.
(3)在(2)的条件下,求
面积的最大值.


(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足

(3)在(2)的条件下,求

已知椭圆
:
的离心率为
,点A为该椭圆的左顶点,过右焦点
的直线l与椭圆交于B,C两点,当
轴时,三角形ABC的面积为18.

求椭圆
的方程;
如图,当动直线BC斜率存在且不为0时,直线
分别交直线AB,AC于点M、N,问x轴上是否存在点P,使得
,若存在求出点P的坐标;若不存在说明理由.











已知:椭圆
的右焦点为
为上顶点,
为坐标原点,若
的面积为2,且椭圆的离心率为
.
(1)求椭圆的方程;
(2)直线
交椭圆于
两点,当
为
的垂心时,求
的面积.





(1)求椭圆的方程;
(2)直线





已知椭圆
:
的离心率
,左顶点为
.过点
作直线
交椭圆
于另一点
,交
轴于点
,点
为坐标原点.
(1)求椭圆
的方程:
(2)已知
为
的中点,是否存在定点
,对任意的直线
,
恒成立?若存在,求出点
的坐标;若不存在说明理由;
(3)过
点作直线
的平行线与椭圆
相交,
为其中一个交点,求
的最大值.











(1)求椭圆

(2)已知






(3)过





如图,
分别是椭圆
的左、右焦点,焦距为
,动弦
平行于
轴,且
.
(1)求椭圆
的方程;
(2)过
分别作直线
交椭圆于
和
,且
,求四边形
面积的最大值.






(1)求椭圆

(2)过






