刷题首页
题库
高中数学
题干
如图,设椭圆
两顶点
,短轴长为4,焦距为2,过点
的直线
与椭圆交于
两点.设直线
与直线
交于点
.
(1)求椭圆的方程;
(2)求线段
中点
的轨迹方程;
(3)求证:点
的横坐标为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 05:26:56
答案(点此获取答案解析)
同类题1
已知
F
1
,
F
2
分别是椭圆
E
:
+
(
)的左、右焦点,点(1,
)在椭圆上,且点(
,0)到直线
PF
2
的距离为
,其中点
P
(
,
),则椭圆的标准方程为
A.
x
2
+
=1
B.
+y
2
=1
C.
x
2
+
=1
D.
+y
2
=1
同类题2
已知椭圆C:
(
)的左、右焦点分别为
,
且椭圆上存在一点
P
,满足.
,
(1)求椭圆
C
的标准方程;
(2)已知
A
,
B
分别是椭圆
C
的左、右顶点,过
的直线交椭圆
C
于
M
,
N
两点,记直线
,
的交点为
T
,是否存在一条定直线
l
,使点
T
恒在直线
l
上?
同类题3
已知椭圆
:
过点
,且它的焦距是短轴长的
倍.
(1)求椭圆
的方程.
(2)若
,
是椭圆
上的两个动点(
,
两点不关于
轴对称),
为坐标原点,
,
的斜率分别为
,
,问是否存在非零常数
,使当
时,
的面积
为定值?若存在,求
的值;若不存在,请说明理由.
同类题4
椭圆
的左、右焦点分别为
,
为椭圆上一动点(异于左、右顶点),若
的周长为
,且面积的最大值为
.
(1)求椭圆
的方程;
(2)设
是椭圆
上两动点,线段
的中点为
,
的斜率分别为
为坐标原点
,且
,求
的取值范围.
同类题5
已知椭圆方程为
,它的一个顶点为
,离心率
.
(1)求椭圆的方程;
(2)设直线
与椭圆交于
,
两点,坐标原点
到直线
的距离为
,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程