- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- + 抛物线的弦长
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过抛物线
的焦点作一条直线与抛物线相交于
、
两点,且这两点的横坐标之和为
,则满足条件的直线( )




A.有且只有一条 | B.有两条 | C.有无穷多条 | D.必不存在 |
已知抛物线
:
,直线
:
与
交于
、
两点,
为坐标原点.
(1)当直线
过抛物线
的焦点
时,求
;
(2)是否存在直线
使得直线
?若存在,求出直线
的方程;若不存在,请说明理由.








(1)当直线




(2)是否存在直线



已知抛物线C:
,过焦点F的直线l与抛物线C交于M,N两点.
(1)若直线l的倾斜角为
,求
的长;
(2)设M在准线上的射影为A,求证:A,O,N三点共线(O为坐标原点).

(1)若直线l的倾斜角为


(2)设M在准线上的射影为A,求证:A,O,N三点共线(O为坐标原点).