- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- + 抛物线的弦长
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为
,若过点
且斜率为1的直线与抛物线相交于
,
两点,且
.
(1)求抛物线
的方程;
(2)设直线
,且在
轴上的截距为2,
与抛物线交于
,
两点,求
面积.






(1)求抛物线

(2)设直线






如图,已知点
是
轴左侧(不含
轴)一点,抛物线
上存在不同的两点
、
,满足
、
的中点均在抛物线
上.

(1)求抛物线
的焦点到准线的距离;
(2)设
中点为
,且
,
,证明:
;
(3)若
是曲线
(
)上的动点,求
面积的最小值.










(1)求抛物线

(2)设





(3)若



