刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,点
在
上
(1)求
的方程
(2)直线
不过原点
且不平行于坐标轴,
与
有两个交点
,线段
的中点为
.证明:直线
的斜率与直线
的斜率的乘积为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-08 10:50:28
答案(点此获取答案解析)
同类题1
椭圆
:
的长轴长为4,离心率为
.
(1)求椭圆
的方程;
(2)若直线
:
交椭圆
于
,
两点,点
在椭圆
上,且不与
、
两点重合,直线
,
的斜率分别为
,
.求证:
,
之积为定值.
同类题2
已知
P
是椭圆
E
:
上异于点
,
的一点,
E
的离心率为
,则直线
AP
与
BP
的斜率之积为
A.
B.
C.
D.
同类题3
已知椭圆
的一个顶点和两个焦点构成的三角形的面积为4.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于
、
两点,试问,是否存在
轴上的点
,使得对任意的
,
为定值,若存在,求出
点的坐标,若不存在,说明理由.
同类题4
点
在椭圆
:
上,且点
到椭圆两焦点的距离之和为
.
(1)求椭圆
的方程;
(2)已知动直线
与椭圆
相交于
两点,若
,求证:
为定值
同类题5
已知
、
是双曲线
的两个顶点,点
是双曲线上异于
、
的一点,
为坐标原点,射线
交椭圆
于点
,设直线
、
、
、
的斜率分别为
、
、
、
.
(1)若双曲线
的渐近线方程是
,且过点
,求
的方程;
(2)在(1)的条件下,如果
,求
的面积;
(3)试问:
是否为定值?如果是,请求出此定值;如果不是,请说明理由.
相关知识点
平面解析几何
平面解析几何
圆锥曲线
圆锥曲线
直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系