刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,直线
与椭圆
交于
两点,且线段
的中点为
,则直线
的斜率为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2018-10-31 11:13:59
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,
是椭圆上一点.
(1)求椭圆的标准方程;
(2)过椭圆右焦点
的直线与椭圆交于
两点,
是直线
上任意一点.证明:直线
的斜率成等差数列.
同类题2
设椭圆C:
过点(0,4),离心率为
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为
的直线被C所截线段的中点坐标.
同类题3
已知椭圆
C
:
,(
a
>
b
>0)过点(1,
)且离心率为
.
(1)求椭圆
C
的方程;
(2)设椭圆
C
的右顶点为
P
,过定点(2,﹣1)的直线
l
:
y
=
kx
+
m
与椭圆
C
相交于异于点
P
的
A
,
B
两点,若直线
PA
,
PB
的斜率分别为
k
1
,
k
2
,求
k
1
+
k
2
的值.
同类题4
已知椭圆
:
的离心率为
,点
在椭圆上,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
、
、
为椭圆
上的三点,若四边形
为平行四边形,证明四边形
的面积
为定值,并求出该定值.
同类题5
(题文)如图,已知椭圆
:
经过点
,且离心率等于
,点
,
分别为椭圆
的左、右顶点,
,
是椭圆
上非顶点的两点,且
的面积等于
.
(1)求椭圆
的方程;
(2)过点
作
交椭圆
于点
,求证:
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆的中点弦