- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与椭圆的位置关系
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的右焦点为
,坐标原点为
.椭圆
的动弦
过右焦点
且不垂直于坐标轴,
的中点为
,过
且垂直于线段
的直线交射线
于点
(I)证明:点
在直线
上;
(Ⅱ)当四边形
是平行四边形时,求
的面积.












(I)证明:点


(Ⅱ)当四边形


已知椭圆方程为
,射线
与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A,B两点(异于M).
(1)求证:直线AB的斜率为定值;
(2)求
面积的最大值.


(1)求证:直线AB的斜率为定值;
(2)求

已知椭圆
:
的长轴长为4,两准线间距离为
.设
为椭圆
的左顶点,直线
过点
,且与椭圆
相交于
,
两点.

(1)求椭圆
的方程;
(2)若
的面积为
,求直线
的方程;
(3)已知直线
,
分别交直线
于点
,
,线段
的中点为
,设直线
和
的斜率分别为
,
,求证:
为定值.











(1)求椭圆

(2)若



(3)已知直线












已知中心在坐标原点O的椭圆C经过点A(
),且点F(
,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在直线l与椭圆C交于B,D两点,满足
,且原点到直线l的距离为
?若存在,求出直线l的方程;若不存在,请说明理由.


(1)求椭圆C的方程;
(2)是否存在直线l与椭圆C交于B,D两点,满足


已知椭圆
的离心率为
,右焦点
与抛物线
的焦点重合,左顶点为
,过
的直线交椭圆于
两点,直线
与直线
交于
两点.
(1)求椭圆
的方程;
(2)试计算
是否为定值?若是,请求出该值;若不是,请说明理由.










(1)求椭圆

(2)试计算

已知椭圆
:
的离心率为
,椭圆的一个顶点与两个焦点构成的三角形面积为2.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于
两点,且与
轴,
轴交于
两点.
(i)若
,求
的值;
(ii)若点
的坐标为
,求证:
为定值.



(1)求椭圆

(2)已知直线






(i)若


(ii)若点



在平面直角坐标系
中,点
,
,动点
满足
.
(1)求动点
的轨迹
的方程;
(2)若直线
与轨迹
有且仅有一个公共点
,且与直线
相交于点
,求证:以
为直径的圆过定点
.





(1)求动点


(2)若直线







已知
、
是椭圆
(
)的左、右焦点,过
作
轴的垂线与
交于
、
两点,
与
轴交于点
,
,且
,
为坐标原点.
(1)求
的方程;
(2)设
为椭圆
上任一异于顶点的点,
、
为
的上、下顶点,直线
、
分别交
轴于点
、
.若直线
与过点
、
的圆切于点
.试问:
是否为定值?若是,求出该定值;若不是,请说明理由。









两点,






(1)求

(2)设














