- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与椭圆的位置关系
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
离心率为
,四个顶点构成的四边形的面积是4.
(1)求椭圆C的标准方程;
(2)若直线
与椭圆C交于P,Q均在第一象限,直线OP,OQ的斜率分别为
,
,且
(其中O为坐标原点).证明:直线l的斜率k为定值.


(1)求椭圆C的标准方程;
(2)若直线




已知椭圆
:
的左右顶点分别为
,
,点
是椭圆
上异于
、
的任意一点,设直线
,
的斜率分别为
、
,且
,椭圆的焦距长为4.
(1)求椭圆
的离心率;
(2)过右焦点
且倾斜角为
的直线
交椭圆
于
、
两点,分别记
,
的面积为
、
,求
的值.













(1)求椭圆

(2)过右焦点











已知椭圆C:
,左焦点
,且离心率
.
1
求椭圆C的方程;
2
若直线l:
与椭圆C交于不同的两点M,
N不是左、右顶点
,且以MN为直径的圆经过椭圆C的右顶点
求直线l的方程.











已知椭圆
:
的左顶点为
,右焦点为
,
为原点,
,
是
轴上的两个动点,且
,直线
和
分别与椭圆
交于
,
两点.
(Ⅰ)求
的面积的最小值;
(Ⅱ)证明:
,
,
三点共线.















(Ⅰ)求

(Ⅱ)证明:


