刷题宝
  • 刷题首页
题库 高中数学

题干

设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.
(1)证明:直线过定点,并求出该定点的坐标;
(2)是否存在常数,满足?并说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2020-02-12 01:38:40

答案(点此获取答案解析)

同类题1

已知椭圆的离心率为,分别为椭圆的左右焦点,为椭圆短轴的一个端点,的面积为.
(1)求椭圆的方程;
(2)若是椭圆上异于顶点的四个点与相交于点,且,求的取值范围.

同类题2

已知中心在坐标原点O的椭圆C经过点A(),且点F(,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在直线与椭圆C交于B,D两点,满足,且原点到直线l的距离为?若存在,求出直线的方程;若不存在,请说明理由.

同类题3

已知椭圆:的两个焦点为,,焦距为,直线:与椭圆相交于,两点,为弦的中点.
(1)求椭圆的标准方程;
(2)若直线:与椭圆相交于不同的两点,,,若(为坐标原点),求的取值范围.

同类题4

已知椭圆及直线:
(1)当直线与该椭圆有公共点时,求实数的取值范围;
(2)当时,求直线被椭圆截得的弦长
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 直线与圆锥曲线的位置关系
  • 直线与椭圆的位置关系
  • 根据直线与椭圆的位置关系求参数或范围
  • 抛物线中的直线过定点问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)