- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与椭圆的位置关系
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的右焦点为
,原点为
,椭圆
的动弦
过焦点
且不垂直于坐标轴,弦
的中点为
,过
且垂直于线段
的直线交射线
于点
.
(1)证明:点
在定直线上;
(2)当
最大时,求
的面积.












(1)证明:点

(2)当



已知椭圆
过点
,离心率为
.若
是椭圆
上的不同的两点,
的面积记为
.
(I)求椭圆
的方程;
(II)设直线
的方程为
,
,
,求
的值;
(III)设直线
,
的斜率之积等于
,试证明:无论
如何移动,面积
保持不变.







(I)求椭圆

(II)设直线





(III)设直线





已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆的方程;
(2)设直线
与椭圆相交于
,
两点,
,
分别为线段
,
的中点,若坐标原点
在以
为直径的圆上,求
的值.



(1)求椭圆的方程;
(2)设直线










已知椭圆
:
的左顶点为
,上顶点为
,直线
与直线
垂直,垂足为
点,且点
是线段
的中点.

(I)求椭圆
的方程;
(II)如图,若直线
:
与椭圆
交于
,
两点,点
在椭圆
上,且四边形
为平行四边形,求证:四边形
的面积
为定值.











(I)求椭圆

(II)如图,若直线










(本小题满分
分)已知圆
有以下性质:
①过圆
上一点
的圆的切线方程是
.
②若
为圆
外一点,过
作圆
的两条切线,切点分别为
,则直线
的方程为
.
③若不在坐标轴上的点
为圆
外一点,过
作圆
的两条切线,切点分别为
,则
垂直
,即
,且
平分线段
.
(1)类比上述有关结论,猜想过椭圆
上一点
的切线方程(不要求证明);
(2)过椭圆
外一点
作两直线,与椭圆相切于
两点,求过
两点的直线方程;
(3)若过椭圆
外一点
(
不在坐标轴上)作两直线,与椭圆相切于
两点,求证:
为定值,且
平分线段
.


①过圆



②若







③若不在坐标轴上的点










(1)类比上述有关结论,猜想过椭圆


(2)过椭圆




(3)若过椭圆







设
为椭圆
的左右焦点,
为椭圆上一点,满足
,已知三角形
的面积为1.
(1) 求
的方程:
(2) 设
的上顶点为
,过点(2,-1)的直线与椭圆交于
两点(异于
),求证: 直线
和
的斜率之和为定值,并求出这个定值.





(1) 求

(2) 设






在平面直角坐标系
中,椭圆
的焦距为2,
分别为其左右焦点,过
的直线与椭圆交于
两点,直线
的斜率为-1.

(I)若直线
与椭圆的右准线交于点
且
,求椭圆的标准方程;
(Ⅱ)若
,求
的取值范围.







(I)若直线



(Ⅱ)若


如图,已知椭圆C:
(a>b>0)的左、右焦点分别为F1、F2,若椭圆C经过点(0,
),离心率为
,直线l过点F2与椭圆C交于A、B两点.
(1)求椭圆C的方程;
(2)若点N为△F1AF2的内心(三角形三条内角平分线的交点),求△F1NF2与△F1AF2面积的比值;
(3)设点A,F2,B在直线x=4上的射影依次为点D,G,




(1)求椭圆C的方程;
(2)若点N为△F1AF2的内心(三角形三条内角平分线的交点),求△F1NF2与△F1AF2面积的比值;
(3)设点A,F2,B在直线x=4上的射影依次为点D,G,
A.连结AE,BD,试问当直线l的倾斜角变化时,直线AE与BD是否相交于定点T?若是,请求出定点T的坐标;若不是,请说明理由. |

动点
在圆
:
上运动,定点
,线段
的垂直平分线与直线
的交点为
.
(1)求
的轨迹
的方程;
(2)过点
的直线
,
分别交轨迹
于
,
两点和
,
两点,且
.证明:过
和
中点的直线过定点.







(1)求


(2)过点










