- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本题满分15分)如图,已知抛物线
,圆
,过点
作不过原点O的直线PA,PB分别与抛物线
和圆
相切,A,B为切点.

(1)求点A,B的坐标;
(2)求
的面积.
注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.






(1)求点A,B的坐标;
(2)求

注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.
已知过抛物线
(
)的焦点
且斜率为
的直线与抛物线
在第一象限的交点为
,且
.
(1)求抛物线
的方程;
(2)过
且斜率不为0直线
交抛物线
于
两点,抛物线
的准线与
轴交于点
,求证:直线
与
关于
轴对称.







(1)求抛物线

(2)过










在平面直角坐标系
中,已知两点
,若点
的坐标满足
,且点
的轨迹与抛物线
交于
两点.
(
)求证:
(
)在
轴上是否存在一点
,使得过点
任作一条抛物线的弦,并以该弦为直径的圆过原点.若存在,求出
的值及圆心的轨迹方程;若不存在,请说明理由.







(


(





已知动点
到点
的距离比它到直线
的距离小2.
(1)求动点
的轨迹方程;
(2)记
点的轨迹为
,过点
斜率为
的直线交
于
两点,
,延长
与
交于
两点,设
的斜率为
,证明:
为定值.



(1)求动点

(2)记












