- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛物线
上有两个定点A、B分别在对称轴的上下两侧,
为抛物线的焦点,并且|
,在抛物线
这段曲线上求一点P,使
的面积最大,并求这个最大面积.





已知抛物线
,其焦点为
.

(1)若点
,求以
为中点的抛物线的弦所在的直线方程;
(2)若互相垂直的直线
都经过抛物线
的焦点
,且与抛物线相交于
两点和
两点,求四边形
面积的最小值.



(1)若点


(2)若互相垂直的直线






已知抛物线
与圆
分别相交于
两点(
为坐标原点).
(1)设分别过
两点的圆的切线相交于点
,求四边形
的面积;
(2)当点
在
轴上运动时,求满足
为钝角时,点
横坐标的取值范围.




(1)设分别过



(2)当点



