- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的长轴长为4,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右顶点作互相垂直的两条直线
分别交椭圆
于
两点(点
不同于椭圆
的右顶点),证明:直线
过定点
.




(1)求椭圆

(2)过椭圆








如图,分别过椭圆
左、右焦点
的动直线
相交于
点,与椭圆
分别交于
与
不同四点,直线
的斜率
满足
.已知当
与
轴重合时,
,
.

(1)求椭圆
的方程;
(2)是否存在定点
,使得
为定值?若存在,求出
点坐标并求出此定值;若不存在,说明理由.















(1)求椭圆

(2)是否存在定点



设顶点在原点,焦点在
轴上的拋物线过点
,过
作抛物线的动弦
,
,并设它们的斜率分别为
,
.
(Ⅰ)求拋物线的方程;
(Ⅱ)若
,求证:直线
的斜率为定值,并求出其值;
(III)若
,求证:直线
恒过定点,并求出其坐标.







(Ⅰ)求拋物线的方程;
(Ⅱ)若


(III)若


设点
为抛物线
外一点,过点
作抛物线
的两条切线
,
,切点分别为
,
.

(Ⅰ)若点
为
,求直线
的方程;
(Ⅱ)若点
为圆
上的点,记两切线
,
的斜率分别为
,
,求
的取值范围.









(Ⅰ)若点



(Ⅱ)若点






