- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在平面直角坐标系
中,设点
是椭圆
:
上一点,从原点
向圆
:
作两条切线分别与椭圆
交于点
,
,直线
,
的斜率分别记为
,
.

(1)求证:
为定值;
(2)求四边形
面积的最大值.















(1)求证:

(2)求四边形

已知椭圆C:
,F1、F2分别为其左、右焦点,A1,A2分别为其长轴的左右端点,动点M满足MA2⊥A1A2,A1M交椭圆于点P,则
的值为( )



A.8 | B.16 | C.20 | D.24 |
已知椭圆C:
(
>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B2、B1,O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若M、N是椭圆C上的两个不同的动点,直线OM、ON的斜率之积等于
,试探求△OMN的面积是否为定值,并说明理由.



(Ⅰ)求椭圆C的方程;
(Ⅱ)若M、N是椭圆C上的两个不同的动点,直线OM、ON的斜率之积等于

已知定直线
,定点
,以坐标轴为对称轴的椭圆
过点
且与
相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦
的中点分别为
,若
平行于
,则
斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由.





(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦





已知椭圆
的离心率为
,若椭圆
与圆
相交于
两点,且圆
在椭圆
内的弧长为
.
(1)求
的值;
(2)过椭圆
的中心作两条直线
交椭圆
于
和
四点,设直线
的斜率为
,
的斜率为
,且
.
①求直线
的斜率;
②求四边形
面积的取值范围.








(1)求

(2)过椭圆










①求直线

②求四边形

椭圆
:
的离心率为
,过其右焦点
与长轴垂直的弦长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的左右顶点分别为
,点
是直线
上的动点,直线
与椭圆另一交点为
,直线
与椭圆另一交点为
.求证:直线
经过一定点.





(Ⅰ)求椭圆

(Ⅱ)设椭圆









如图,
是椭圆
长轴的两个端点,
是椭圆
上都不与
重合的两点,记直线
的斜率分别是
.

(1)求证:
;
(2)若
,求证:直线
恒过定点,并求出定点坐标.








(1)求证:

(2)若


已知椭圆C:
(a>b>0)过点(1,
),且离心率e=
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),椭圆的右顶点为D,且满足
·
=0,试判断直线l是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.



(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),椭圆的右顶点为D,且满足


设椭圆
的方程为
(
),点
为坐标原点,点
,
的坐标分别为
,
,点
在线段
上,满足
,直线
的斜率为
.
(1)求椭圆
的方程;
(2)若斜率为
的直线
交椭圆
于
,
两点,交
轴于点
(
),问是否存在实数
使得以
为直径的圆恒过点
?若存在,求
的值,若不存在,说出理由.













(1)求椭圆

(2)若斜率为











