刷题首页
题库
高中数学
题干
椭圆
:
的离心率为
,过其右焦点
与长轴垂直的弦长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的左右顶点分别为
,点
是直线
上的动点,直线
与椭圆另一交点为
,直线
与椭圆另一交点为
.求证:直线
经过一定点.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-22 11:45:31
答案(点此获取答案解析)
同类题1
已知椭圆
:
过点
,左、右顶点分别为
,
,点
是椭圆
上异于
,
的一点,直线
与
轴交于点
.
(1)求椭圆
的方程;
(2)设椭圆
的右焦点为
,点
在
轴上,且
,求证:
为定值.
同类题2
设椭圆
的离心率为
,圆
与
轴正半轴交于点
, 圆
在点
处的切线被椭圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设圆
上任意一点
处的切线交椭圆
于点
、
,求证:
为定值.
同类题3
已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.
同类题4
已知椭圆
的焦点在坐标轴上,对称中心为坐标原点,且过点
和
.
(1)求椭圆
的标准方程;
(2)设直线
交椭圆
于
两点,坐标原点
到直线
的距离为
,求证:
是定值.
同类题5
在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)过点P(1,
).离心率为
.
(1)求椭圆C的方程;
(2)设直线
l
与椭圆C交于A,B两点.
①若直线
l
过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线
l
的斜率为
,试探究OA
2
+ OB
2
是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题