刷题首页
题库
高中数学
题干
如图,
是椭圆
长轴的两个端点,
是椭圆
上都不与
重合的两点,记直线
的斜率分别是
.
(1)求证:
;
(2)若
,求证:直线
恒过定点,并求出定点坐标.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-19 06:37:58
答案(点此获取答案解析)
同类题1
如图,已知椭圆
的左、右两个焦点分别为
设
,若
为正三角形且周长为
.
(1)求椭圆
的标准方程;
(2)若过点
且斜率为
的直线与椭圆
相交于不同的两点
,是否存在实数
使
成立,若存在,求出
的值,若不存在,请说明理由;
(3)若过点
的直线与椭圆
相交于不同的两点
两点,
记的面积记为
,求
的取值范围.
同类题2
如图,已知抛物线
,其焦点到准线的距离为2,圆
,直线
与圆和抛物线自左至右顺次交于四点
、
、
、
,
(1)若线段
、
、
的长按此顺序构成一个等差数列,求正数
的值;
(2)若直线
过抛物线焦点且垂直于直线
,直线
与抛物线交于点
、
,设
、
的中点分别为
、
,求证:直线
过定点.
同类题3
在平面直角坐标系
中,已知椭圆
,如图所示,斜率为
且不过原点的直线
交椭圆
于两点
,线段
的中点为
,射线
交椭圆
于点
,交直线
于点
.
(1)求
的最小值;
(2)若
,求证:直线
过定点.
同类题4
已知圆
的方程为
,若抛物线
过点
,且以圆0的切线为准线,
为抛物线的焦点,点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
作直线
交曲线
与
两点,
关于
轴对称,请问:直线
是否过
轴上的定点,如果不过请说明理由,如果过定点,请求出定点
的坐标
同类题5
已知圆
,圆
,动圆
P
与圆
M
外切并且与圆
N
内切,圆心
P
的轨迹为曲线
C
.
(1)求曲线
C
的方程;
(2)设不经过点
的直线
l
与曲线
C
相交于
A
,
B
两点,直线
QA
与直线
QB
的斜率均存在且斜率之和为-2,证明:直线
l
过定点.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题
椭圆中的定值问题