- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- + 直线与圆锥曲线的位置关系
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在平面直角坐标系xOy中,已知抛物线
的焦点为F,准线与x轴的交点为H,过点F的直线l与抛物线的交点为A,B,且
.
求证:
;
求
的值.







在直角坐标系
中,抛物线
:
与直线
:
交于
,
两点.
(1)设
,
到
轴的距离分别为
,
,证明:
与
的乘积为定值.
(2)
轴上是否存在点
,当
变化时,总有
?若存在,求点
的坐标;若不存在,请说明理由.







(1)设







(2)





已知抛物线E:
的焦点为F,
是抛物线E上一点,且
.
1
求抛物线E的标准方程;
2
设点B是抛物线E上异于点A的任意一点,直线AB与直线
交于点P,过点P作x轴的垂线交抛物线E于点M,设直线BM的方程为
,k,b均为实数,请用k的代数式表示b,并说明直线BM过定点.









已知抛物线C:
,直线
与C相交所得的长为8.
求
的值;
已知点O为坐标原点,一条动直线l与抛物线C交于O,M两点,直线l与直线
交于H点,过点H作y轴的垂线交抛物线C于N点,求证:直线MN过定点.






已知抛物线C:
的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有
,当点A的横坐标为3时,
为正三角形.
Ⅰ
求C的方程;
Ⅱ
若直线
,且
和C有且只有一个公共点E,试问直线AE是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.









已知抛物线
:
,其焦点为
,
为坐标原点,直线
与抛物线
相交于不同两点
,
,
为
的中点.
(1若
,
的坐标为
,求直线
的方程;
(2)若直线
过焦点
,
的垂直平分线交
轴于点
,试问:
是否为定值,若为定值,试求出此定值,否则,说明理由.










(1若




(2)若直线






已知点
在抛物线
:
的准线上,过点
作抛物线
的两条切线,切点分别为
,
.
(1)证明:
为定值;
(2)当点
在
轴上时,过点
作直线
,
交抛物线
于
,
两点,满足
.问:直线
是否恒过定点
,若存在定点,求出点
的坐标;若不存在,请说明理由.







(1)证明:

(2)当点












已知抛物线C的焦点是椭圆
的右焦点,准线方程为
.
Ⅰ
求抛物线C的方程;
Ⅱ
若点P,Q是抛物线C上异于坐标原点O的任意两点,且满足
,求证:直线PQ过定点.






