刷题首页
题库
高中数学
题干
在直角坐标系
中,抛物线
:
与直线
:
交于
,
两点.
(1)设
,
到
轴的距离分别为
,
,证明:
与
的乘积为定值.
(2)
轴上是否存在点
,当
变化时,总有
?若存在,求点
的坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-18 11:50:28
答案(点此获取答案解析)
同类题1
已知抛物线
C
:
x
2
=2
py
(
p
>0)的焦点到直线
l
:2
x
﹣
y
﹣1=0的距离为
.
(1)求抛物线的方程;
(2)过点
P
(0,
t
)(
t
>0)的直线
l
与抛物线
C
交于
A
,
B
两点,交
x
轴于点
Q
,若抛物线
C
上总存在点
M
(异于原点
O
),使得∠
PMQ
=∠
AMB
=90°,求实数
t
的取值范围.
同类题2
已知抛物线方程
,
为焦点,
为抛物线准线上一点,
为线段
与抛物线的交点,定义:
.
(1)当
时,求
;
(2)证明:存在常数
,使得
.
同类题3
已知抛物线
:
,焦点为
,设
为
上的一动点,以
为切点作
的切线,与
轴交于点
,以
,
为邻边作平行四边形
.
(1)证明:点
在一条定直线上;
(2)设直线
与
交于
,
两点.若直线
的斜率
,求
的最小值.
同类题4
在直角坐标系
中,曲线
:
与直线
:
交于
,
两点.
(1)当
时,求
的面积的取值范围.
(2)
轴上是否存在点
,使得当
变动时,总有
?若存在,求点
的坐标;若不存在,请说明理由.
同类题5
(本小题满分12分)在平面直角坐标系
中,已知抛物线
:
,过点
的直线
与抛物线
分别相交于
两个不同的点.
(1)以AB为直径的圆是否过定点,若是请求出该点坐标。若不是,请说明理由
(2)过
两点分别作抛物线
的切线
,设它们相交于点
,求
的取值范围
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
抛物线中的定点、定值
抛物线中存在定点满足某条件问题
抛物线中的定值问题