- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的右焦点
,椭圆
的左,右顶点分别为
.过点
的直线
与椭圆交于
两点,且
的面积是
的面积的3倍.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
与
轴垂直,
是椭圆
上位于直线
两侧的动点,且满足
,试问直线
的斜率是否为定值,请说明理由.









(Ⅰ)求椭圆

(Ⅱ)若







如图,椭圆
的离心率为
,顶点为
,
,
,
,且
.

(1)求椭圆
的方程;
(2)若
是椭圆
上除顶点外的任意一点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
,试问
是否为定值?并说明理由.








(1)求椭圆

(2)若













已知椭圆
与双曲线
有公共焦点,且离心率为
,
分别是椭圆
的左、右顶点.点
是椭圆
上位于
轴上方的动点.直线
,
分别与直线
交于
两点.
(I)求椭圆
的方程;
(II)当线段
的长度最小时,在椭圆
上是否存在点
,使得
的面积为
?若存在,求出
的坐标,若不存在,请说明理由.












(I)求椭圆

(II)当线段







过点
的椭圆
(
)的离心率为
,椭圆与
轴的交于两点
,过点
的直线
与椭圆交于另一点
,并与
轴交于点
,直线
与直线
叫与点
.

(I)当直线
过椭圆右交点时,求线段
的长;
(II)当点
异于
两点时,求证:
为定值.















(I)当直线


(II)当点



在圆
上任取一点
,过点
作
轴的垂线段
,
为垂足,当点
在圆上运动时,线段
的中点
的轨迹为曲线
(Ⅰ)求曲线
的方程;
(Ⅱ)过点
的直线
与曲线
相交于不同的两点
, 点
在线段
的垂直平分线上,且
,求
的值










(Ⅰ)求曲线

(Ⅱ)过点









已知椭圆
经过点
,离心率为
.
(1)求椭圆的方程;
(2)设过定点
的直线
与椭圆交于不同的两点
,且
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.



(1)求椭圆的方程;
(2)设过定点







已知双曲线
的离心率为
,左、右焦点分别为
、
,一条准线的方程为
.
(1)求双曲线
的方程;
(2)若双曲线
上的一点
满足
,求
的值;
(3)若直线
与双曲线
交于不同的两点
,且
在以
为圆心的圆上,求实数
的取值范围.





(1)求双曲线

(2)若双曲线




(3)若直线






设椭圆
的一个顶点与抛物线
的焦点重合,
分别是椭圆的左、右焦点,且离心率
且过椭圆右焦点
的直线
与椭圆C交于
两点.
(1)求椭圆C的方程;
(2)是否存在直线
,使得
.若存在,求出直线
的方程;若不存在,说明理由.
(3)若
是椭圆
经过原点
的弦,
,求证:
为定值







(1)求椭圆C的方程;
(2)是否存在直线



(3)若





如图,
为椭圆
的左右焦点,
是椭圆的两个顶点,
,
,若点
在椭圆
上,则点
称为点
的一个“椭点”.直线
与椭圆交于
两点,
两点的“椭点”分别为
,已知以
为直径的圆经过坐标原点
.

(1)求椭圆
的标准方程;
(2)试探讨
的面积
是否为定值?若为定值,求出该定值;若不为定值,请说明理由.
















(1)求椭圆

(2)试探讨

