刷题首页
题库
高中数学
题干
如图,椭圆
的离心率为
,顶点为
,
,
,
,且
.
(1)求椭圆
的方程;
(2)若
是椭圆
上除顶点外的任意一点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
,试问
是否为定值?并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-08-01 09:13:03
答案(点此获取答案解析)
同类题1
已知椭圆
,
的右焦点
,长轴的左、右端点分别为
,
,且
.
(1)求椭圆
的方程;
(2)过焦点
斜率为
的直线
交椭圆
于
,
两点,弦
的垂直平分线与
轴相交于点
.试问椭圆
上是否存在点
使得四边形
为菱形?
同类题2
在平面直角坐标系中,已知椭圆
的两个焦点分别是
,直线
与椭圆交于
两点.
(1)若
为椭圆短轴上的一个顶点,且
是直角三角形,求
的值;
(2)若
,且
是以
为直角顶点的直角三角形,求
与
满足的关系;
(3)若
,且
,求证:
的面积为定值.
同类题3
设椭圆
的左、右焦点分别为
,
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
,过
,
三点的圆恰好与直线
相切.
求椭圆
的方程;
过右焦点
作斜率为
的直线
与椭圆
交于
两点,问在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形?如果存在,求出
的取值范围;如果不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆方程求a、b、c
根据a、b、c求椭圆标准方程