刷题首页
题库
高中数学
题干
设椭圆
的一个顶点与抛物线
的焦点重合,
分别是椭圆的左、右焦点,且离心率
且过椭圆右焦点
的直线
与椭圆C交于
两点.
(1)求椭圆C的方程;
(2)是否存在直线
,使得
.若存在,求出直线
的方程;若不存在,说明理由.
(3)若
是椭圆
经过原点
的弦,
,求证:
为定值
上一题
下一题
0.99难度 解答题 更新时间:2011-12-08 03:12:02
答案(点此获取答案解析)
同类题1
已知
在椭圆
上,
为右焦点,
轴,
为椭圆上的四个动点,且
,
交于原点
.
(1)判断直线
与椭圆的位置关系;
(2设
,
满足
,判断
的值是否为定值,若是,请求出此定值,并求出四边形
面积的最大值,否则说明理由.
同类题2
已知椭圆
的右焦点为
,左顶点为
(1)求椭圆
的方程;
(2)过点
作两条相互垂直的直线分别与椭圆
交于(不同于点
的)
两点.试判断直线
与
轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.
同类题3
已知椭圆
长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线
过点
,且与椭圆相交于另一点
.
(1)求椭圆的方程;
(2)若线段
长为
,求直线
的倾斜角;
(3)点
在线段
的垂直平分线上,且
,求
的值.
同类题4
中心在原点,焦点在
轴上的椭圆,下顶点
,且离心率
.
(
)求椭圆的标准方程.
(
)经过点
且斜率为
的直线
交椭圆于
,
两点.在
轴上是否存在定点
,使得
恒成立?若存在,求出点
坐标;若不存在,说明理由.
同类题5
已知椭圆
的右焦点为
,点
在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)点
在圆
上,且
在第一象限,过
作
的切线交椭圆于
两点,问:
的周长是否为定值?若是,求出定值;若不是,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围