- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
(a>b>0)的离心率为
,以椭圆的四个顶点为顶点的四边形的面积为8.
(1)求椭圆C的方程;
(2)如图,斜率为
的直线l与椭圆C交于A,B两点,点P(2,1)在直线l的左上方,若∠APB=90°,且直线PA,PB分别与y轴交于M,N点,求线段MN的长度.


(1)求椭圆C的方程;
(2)如图,斜率为


在平面直角坐标系
中,椭圆
的中心为坐标原点,左焦点为
,
为椭圆
的上顶点,且
.

(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知直线
:
与椭圆
交于
,两点,直线
:
(
)与椭圆
交于
两点,且
,如图所示.
(ⅰ)证明:
;
(ⅱ)求四边形
的面积
的最大值.







(Ⅰ)求椭圆

(Ⅱ)已知直线










(ⅰ)证明:

(ⅱ)求四边形


已知圆
关于椭圆
:
的一个焦点对称,且经过椭圆的一个顶点.
(1)求椭圆
的方程;
(2)设动直线
与椭圆
相交于
两点,已知
为坐标原点,以线段
为邻边作平行四边形
,若点
在椭圆
上,求证:平行四边形
的面积恒为定值.




(1)求椭圆

(2)设动直线









已知椭圆
过点
,且它的离心率
.直线l:y=kx+t与椭圆C1交于M、N两点.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)当
时,求证:M、N两点的横坐标的平方和为定值;
(Ⅲ)若直线l与圆
相切,椭圆上一点P满足
,求实数m的取值范围.




(Ⅰ)求椭圆的标准方程;
(Ⅱ)当

(Ⅲ)若直线l与圆


已知椭圆C:
的离心率为
,左焦点为
,过点
且斜率为
的直线
交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使
恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.






(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使




(1)求椭圆

(2)是否存在平行四边形

①点






如图,在平面直角坐标系xOy中,已知椭圆C1:
+y2=1,椭圆C2:
+
=1(a>b>0),C2与C1的长轴长之比为
∶1,离心率相同.

(1) 求椭圆C2的标准方程;
(2) 设点P为椭圆C2上的一点.
①射线PO与椭圆C1依次交于点A,B,求证:
为定值;
②过点P作两条斜率分别为k1,k2的直线l1,l2,且直线l1,l2与椭圆C1均有且只有一个公共点,求证k1·k2为定值.





(1) 求椭圆C2的标准方程;
(2) 设点P为椭圆C2上的一点.
①射线PO与椭圆C1依次交于点A,B,求证:

②过点P作两条斜率分别为k1,k2的直线l1,l2,且直线l1,l2与椭圆C1均有且只有一个公共点,求证k1·k2为定值.
已知椭圆
右顶点
,离心率
.
(1)求椭圆
的方程;
(2)设
为椭圆上顶点,
是椭圆
在第一象限上一点,直线
与
轴交于点
,直线
与
轴交于点
,问
与
面积之差是否为定值?说明理由.



(1)求椭圆

(2)设











设椭圆
,定义椭圆的“伴随圆”方程为
;若抛物线
的焦点与椭圆C的一个短轴端点重合,且椭圆C的离心率为
.
(1)求椭圆C的方程和“伴随圆”E的方程;
(2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,PB,A,B为切点,延长PA与“伴随圆”E交于点Q,O为坐标原点.
(i)证明:PA⊥PB;
(ii)若直线OP,OQ的斜率存在,设其分别为
,试判断
是否为定值,若是, 求出该值;若不是,请说明理由.




(1)求椭圆C的方程和“伴随圆”E的方程;
(2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,PB,A,B为切点,延长PA与“伴随圆”E交于点Q,O为坐标原点.
(i)证明:PA⊥PB;
(ii)若直线OP,OQ的斜率存在,设其分别为


已知椭圆
的左顶点
和上顶点
的连线的斜率为
,左、右焦点分别为
,
,过点
的直线
与椭圆
交于点
,与y轴交于点
,点
在椭圆上,且
,
(
为坐标原点).
(1)求椭圆
的标准方程;
(2)试判断
是否为定值?若是,求出该定值;若不是,请说明理由.















(1)求椭圆

(2)试判断
