- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,曲线
由部分椭圆
:
和部分抛物线
:
连接而成,
与
的公共点为
,
,其中
所在椭圆的离心率为
.

(Ⅰ)求
,
的值;
(Ⅱ)过点
的直线
与
,
分别交于点
,
(
,
,
,
中任意两点均不重合),若
,求直线
的方程.












(Ⅰ)求


(Ⅱ)过点












如图,
分别是椭圆
的左、右焦点,且焦距为
,动弦
平行于
轴,且
.

(1)求椭圆
的方程;
(2)若点
是椭圆
上异于点
的任意一点,且直线
、
分别与
轴交于点
,若
、
的斜率分别为
,求证:
是定值.







(1)求椭圆

(2)若点











已知椭圆
:
的两个焦点为
,
,焦距为
,直线
:
与椭圆
相交于
,
两点,
为弦
的中点.
(1)求椭圆的标准方程;
(2)若直线
:
与椭圆
相交于不同的两点
,
,
,若
(
为坐标原点),求
的取值范围.













(1)求椭圆的标准方程;
(2)若直线









在平面直角坐标系
中,已知椭圆
经过点
,离心率为
.
(1)求椭圆
的方程;
(2)过点
斜率为
的两条直线分别交椭圆
于
两点,且满足
.证明:直线
的斜率为定值.




(1)求椭圆

(2)过点






已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为长为半径的圆与直线
相切,过点
的直线
与椭圆
相交于
两点.
(1)求椭圆
的方程;
(2)若原点
满足
,求直线
的斜率
的取值范围.







(1)求椭圆

(2)若原点




已知椭圆
的离心率为
,点
在
上.
(1) 求椭圆的方程;
(2) 设
分别是椭圆
的上、下焦点,过
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.




(1) 求椭圆的方程;
(2) 设






