刷题首页
题库
高中数学
题干
在平面直角坐标系
中,已知椭圆
经过点
,离心率为
.
(1)求椭圆
的方程;
(2)过点
斜率为
的两条直线分别交椭圆
于
两点,且满足
.证明:直线
的斜率为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-19 11:04:28
答案(点此获取答案解析)
同类题1
已知椭圆
的中心为原点
,焦点在
轴上,
上的点与
的两个焦点构成的三角形面积的最大值为
,直线
交椭圆于
于
两点.设
为线段
的中点,若直线
的斜率等于
,则椭圆
的方程为__________.
同类题2
已知椭圆
的右焦点
,点
在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若点
在圆
上,且
在第一象限,过点
作圆
的切线交椭圆于
两点,问
是否为定值?如果是,求出该定值;如果不是,说明理由.
同类题3
已知
椭圆
的右焦点,且点
在椭圆上.
(l)求椭圆
的标准方程:
(2)过点
且斜率为1的直线与椭圆
相交于
两点,求线段
的长度.
同类题4
在平面直角坐标系
中,椭圆
:
的离心率为
,焦距为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,动直线
:
交椭圆
于
两点,
是椭圆
上一点,直线
的斜率为
,且
,
是线段
延长线上一点,且
,
的半径为
,
是
的两条切线,切点分别为
.求
的最大值,并求取得最大值时直线
的斜率.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题