刷题宝
  • 刷题首页
题库 高中数学

题干

在平面直角坐标系中,已知椭圆经过点,离心率为.
(1)求椭圆的方程;
(2)过点斜率为的两条直线分别交椭圆于两点,且满足.证明:直线的斜率为定值.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-19 11:04:28

答案(点此获取答案解析)

同类题1

已知椭圆的中心为原点,焦点在轴上,上的点与的两个焦点构成的三角形面积的最大值为,直线交椭圆于于两点.设为线段的中点,若直线的斜率等于,则椭圆的方程为__________.

同类题2

已知椭圆的右焦点,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若点在圆上,且在第一象限,过点作圆的切线交椭圆于两点,问是否为定值?如果是,求出该定值;如果不是,说明理由.

同类题3

已知椭圆的右焦点,且点在椭圆上.
(l)求椭圆的标准方程:
(2)过点且斜率为1的直线与椭圆相交于两点,求线段的长度.

同类题4

在平面直角坐标系中,椭圆:的离心率为,焦距为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 椭圆中的定值问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)