刷题首页
题库
高中数学
题干
已知椭圆
:
的两个焦点为
,
,焦距为
,直线
:
与椭圆
相交于
,
两点,
为弦
的中点.
(1)求椭圆的标准方程;
(2)若直线
:
与椭圆
相交于不同的两点
,
,
,若
(
为坐标原点),求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-19 11:09:06
答案(点此获取答案解析)
同类题1
椭圆
的上顶点为
是椭圆
上一点,以
为直径的圆经过椭圆
的右焦点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若动直线
与椭圆
只有一个公共点,且
轴上存在着两个定点,它们到直线
的距离之积等于1,求出这两个定点的坐标.
同类题2
椭圆
的左、右焦点分别为
、
,弦
过
,若
的内切圆周长为
,
、
两点的坐标分别为
和
,则
的值是
A.
B.
C.
D.
同类题3
已知椭圆的焦点坐标为
,
,过
垂直于长轴的直线交椭圆于
、
两点,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过
的直线
与椭圆交于不同的两点
、
,则
的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
同类题4
(本小题满分16分)设椭圆
的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于不同的两点
,以线段
为直径作圆
.若圆
与
轴相交于不同的两点
,求
的面积;
(3)如图,
、
、
、
是椭圆
的顶点,
是椭圆
上除顶点外的任意点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆方程求a、b、c
根据直线与椭圆的位置关系求参数或范围