- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
(a>b>0)长轴的两顶点为A、B,左右焦点分别为F1、F2,焦距为2c且a=2c,过F1且垂直于x轴的直线被椭圆C截得的线段长为3.
(1)求椭圆C的方程;
(2)在双曲线
上取点Q(异于顶点),直线OQ与椭圆C交于点P,若直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4,试证明:k1+k2+k3+k4为定值;
(3)在椭圆C外的抛物线K:y2=4x上取一点E,若EF1、EF2的斜率分别为
,求
的取值范围.

(1)求椭圆C的方程;
(2)在双曲线

(3)在椭圆C外的抛物线K:y2=4x上取一点E,若EF1、EF2的斜率分别为


如图,P是圆x2+y2=4上的动点,P点在x轴上的射影是D,点M满足
.

(Ⅰ)求动点M的轨迹C的方程
(Ⅱ)设A、B是轨迹C上的不同两点,点E(﹣4,0),且满足
,若λ∈[
,1),求直线AB的斜率k的取值范围.


(Ⅰ)求动点M的轨迹C的方程
(Ⅱ)设A、B是轨迹C上的不同两点,点E(﹣4,0),且满足


已知椭圆
的离心率e满足
,右顶点为A,上顶点为B,点C(0,-2),过点C作一条与y轴不重合的直线l,直线l交椭圆E于P,Q两点,直线BP,BQ分别交x轴于点M,N;当直线l经过点A时,l的斜率为
.

(1)求椭圆E的方程;
(2)证明:
为定值.




(1)求椭圆E的方程;
(2)证明:

已知
,
,动点
满足直线
与直线
的斜率之积为
,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若过点
的直线
与曲线
交于
,
两点,过点
且与直线
垂直的直线与
相交于点
,求
的最小值及此时直线
的方程.








(1)求曲线

(2)若过点










