- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某隧道的拱线设计为半个椭圆的形状,最大拱高
为6米(如图所示),路面设计是双向车道,车道总宽为
米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽
至少应是__________ 米.




已知椭圆
与抛物线
的交点为A,B.A,B连线经过抛物线焦点F,且线段AB的长度等于椭圆的短轴长,则椭圆的离心率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
椭圆
(
)的左、右焦点分别是
,
,以
为圆心的圆过椭圆的中心,且与椭圆交于点P,若直线
恰好与圆
相切于点P,则椭圆的离心率为( )







A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
的左,右焦点分别为
,
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与椭圆
相交于
,
两点,使得
?若存在,求出直线的方程;若不存在,说明理由.





(1)求椭圆

(2)是否存在斜率为






椭圆
上动点
到两个焦点的距离之和为4,且到右焦点距离的最大值为
.
(1)求椭圆
的方程;
(2)设点
为椭圆的上顶点,若直线
与椭圆
交于两点
(
不是上下顶点)
.试问:直线
是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;
(3)在(2)的条件下,求
面积的最大值.



(1)求椭圆

(2)设点







(3)在(2)的条件下,求

已知椭圆
的长轴长与焦距分别为方程
的两个实数根.
(1)求椭圆的标准方程;
(2)若直线
过点
且与椭圆相交于
,
两点,
是椭圆的左焦点,当
面积最大时,求直线
的斜率.


(1)求椭圆的标准方程;
(2)若直线






