刷题首页
题库
高中数学
题干
椭圆
上动点
到两个焦点的距离之和为4,且到右焦点距离的最大值为
.
(1)求椭圆
的方程;
(2)设点
为椭圆的上顶点,若直线
与椭圆
交于两点
(
不是上下顶点)
.试问:直线
是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;
(3)在(2)的条件下,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-04 11:59:16
答案(点此获取答案解析)
同类题1
已知中心在坐标原点O的椭圆C经过点A(
),且点F(
,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在直线
l
与椭圆C交于B,D两点,满足
,且原点到直线
l
的距离为
?若存在,求出直线
l
的方程;若不存在,请说明理由.
同类题2
已知椭圆
的焦点到短轴的端点的距离为
,离心率为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,过点
作平行于
轴的直线
,交直线
于点
,求证:直线
恒过定点.
同类题3
已知椭圆
的一个焦点与抛物线
的焦点重合,且抛物线的准线被椭圆
截得的弦长为1,
是直线
上一点,过点
且与
垂直的直线交椭圆于
两点.
(1)求椭圆
的标准方程;
(2)设直线
的斜率分别为
,求证:
成等差数列.
同类题4
已知椭圆
经过点
,离心率为
,过原点
作两条直线
,直线
交椭圆于
,直线
交椭圆于
,且
.
(1)求椭圆的方程;
(2)若直线
的斜率分别为
,求证:
为定值.
同类题5
定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的,如图,椭圆
与椭圆
是相似的两个椭圆,并且相交于上下两个顶点,椭圆
的长轴长是4,椭圆
,短轴长是1,点
,
分别是椭圆
的左焦点与右焦点.
(1)求椭圆
,
的方程;
(2)过
的直线交椭圆
于点
,
,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题