- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
椭圆E:
(
)的离心率为
,右焦点为F,上顶点为B,且
.
(1)求椭圆E的方程:
(2)是否存在直线l,使得l交椭圆E于M,N两点,且F恰是
的垂心?若存在,求出直线l的方程:若不存在,说明理由,




(1)求椭圆E的方程:
(2)是否存在直线l,使得l交椭圆E于M,N两点,且F恰是

设椭圆
的上顶点为A,右顶点为B.已知
(O为原点).
(1)求椭圆的离心率;
(2)设点
,直线
与椭圆交于两个不同点M,N,直线AM与x轴交于点E,直线AN与x轴交于点F,若
.求证:直线l经过定点.


(1)求椭圆的离心率;
(2)设点



已知椭圆C:
(a>b>0)的离心率为
,直线l1经过椭圆的上顶点A和右顶点B,并且和圆x2+y2=
相切.
(1)求椭圆C的方程;
(2)设直线
与椭圆C相交于M、N两点,以线段OM、ON为邻边作平行四边形OMPN,其中顶点P在椭圆C上,O为坐标原点,求|OP|的取值范围.



(1)求椭圆C的方程;
(2)设直线

