- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)求与双曲线
有共同的渐近线,且经过点
的双曲线的标准方程;
(2)焦点在坐标轴上,且经过A(-
,2)和B(
,1)两点的椭圆的标准方程


(2)焦点在坐标轴上,且经过A(-


设椭圆
的一个顶点与抛物线
的焦点重合,
、
分别是椭圆
的左、右焦点,其离心率
椭圆
右焦点
的直线
与椭圆
交于
、
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
?若存在,求出直线
的方程;若不存在,说明理由.












(1)求椭圆

(2)是否存在直线



已知椭圆、双曲线均是以线段
的两端点为焦点的曲线,点B是它们的一个公共点且满足
,记此椭圆和双曲线的离心率分别为
、
,则
( )





A.![]() | B.2 | C.![]() | D.3 |
已知椭圆
的两个焦点分别为
,以椭圆短轴为直径的圆经过点
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于
两点,设点
,直线
的斜率分别为
,问
是否为定值?并证明你的结论.



(1)求椭圆

(2)过点








已知曲线
上任意一点
到两个定点
和
的距离之和为4.
(1)求曲线
的方程;
(2)设过
的直线
与曲线
交于
、
两点,且
(
为坐标原点),求直线
的方程.




(1)求曲线

(2)设过







