刷题首页
题库
高中数学
题干
已知椭圆
的左,右焦点分别为
,
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与椭圆
相交于
,
两点,使得
?若存在,求出直线的方程;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-04 11:18:57
答案(点此获取答案解析)
同类题1
已知椭圆
C
过点
,两焦点为
,
.
(1)求椭圆
C
的方程;
(2)若椭圆
C
与直线
交于
P
,
Q
两点,且
为坐标原点
,求证:
为定值,并求此定值.
同类题2
与双曲线
共焦点,且过点
的椭圆方程为________.
同类题3
与椭圆
有相同离心率,且过点
的椭圆的标准方程是( )
A.
B.
C.
D.
或
同类题4
已知椭圆
C
:
经过点
,且离心率为
.
(1)求椭圆
C
的方程;
(2)若一组斜率为2的平行线,当它们与椭圆
C
相交时,证明:这组平行线被椭圆
C
截得的线段的中点在同一条直线上.
同类题5
已知椭圆
的两焦点为
,
,且过点
,直线
交曲线
于
,
两点,
为坐标原点.
(1)求椭圆
的标准方程;
(2)若
不过点
且不平行于坐标轴,记线段
的中点为
,求证:直线
的斜率与
的斜率的乘积为定值;
(3)若直线
过点
,求
面积的最大值,以及取最大值时直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定直线