刷题首页
题库
高中数学
题干
某隧道的拱线设计为半个椭圆的形状,最大拱高
为6米(如图所示),路面设计是双向车道,车道总宽为
米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽
至少应是__________ 米.
上一题
下一题
0.99难度 填空题 更新时间:2020-01-04 03:09:55
答案(点此获取答案解析)
同类题1
设点
在以
,
为焦点的椭圆
上.
(1)求椭圆
的方程;
(2)经过
作直线
交
于两点
,交
轴于
,若
,
,且
,求
.
同类题2
已知椭圆以坐标轴为对称轴,且长轴长是短轴长的
倍,并且过点
,求椭圆的方程.
同类题3
已知椭圆
经过点
,且离心率为
.
(1)求椭圆
的方程;
(2)设
分别为椭圆
的左、右焦点,不经过
的直线
与椭圆
交于两个不同的点
,如果直线
、
、
的斜率依次成等差数列,求焦点
到直线
的距离
的取值范围.
同类题4
已知抛物线
的方程为
,焦点为
,有一定点
,
在抛物线准线上的射影为
,
为抛物线上一动点.
(1)当
取最小值时,求
;
(2)如果一椭圆
以
、
为焦点,且过点
,求椭圆
的方程及右准线方程;
(3)设
是过点
且垂直于
轴的直线,是否存在直线
,使得
与抛物线
交于两个
不同的点
、
,且
恰被
平分?若存在,求出
的倾斜角
的范围;若不存在,请说明理由.
同类题5
已知,椭圆
过点
,两个焦点为
,
,
是椭圆
上的两个动点,直线
的斜率与
的斜率互为相反数.
求椭圆
的方程;
求证:直线
的斜率为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆与桥梁问题