- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若存在实常数
和
,使得函数
和
对其公共定义域上的任意实数
都满足:
和
恒成立,则称此直线
为
和
的“隔离直线”,已知函数
,
,
,有下列命题:
①
在
内单调递增;
②
和
之间存在“隔离直线”,且
的最小值为
;
③
和
之间存在“隔离直线”,且
的取值范围是
;·
④
和
之间存在唯一的“隔离直线”
.
其中真命题的个数为 (请填所有正确命题的序号)













①


②




③




④



其中真命题的个数为 (请填所有正确命题的序号)
(题文)已知函数f(x)=
.
(Ⅰ)讨论函数y=f(x)在x∈(m,+∞)上的单调性;
(Ⅱ)若m∈(0,
],则当x∈[m,m+1]时,函数y=f(x)的图象是否总在函数g(x)=
+x图象上方?请写出判断过程.

(Ⅰ)讨论函数y=f(x)在x∈(m,+∞)上的单调性;
(Ⅱ)若m∈(0,


已知函数
都定义在
上,其中
是自然常数.
(Ⅰ)当
时,求
的单调增区间;
(Ⅱ)求证:在(Ⅰ)的条件下,
恒成立;
(Ⅲ)若
时,对于
,使
,求
的取值范围.



(Ⅰ)当


(Ⅱ)求证:在(Ⅰ)的条件下,

(Ⅲ)若




设函数f(x)=ax2–a–lnx,g(x)=
,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.