- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本题满分16分)设函数
.
(1) 若函数
在
取得极值, 求
的值;
(2) 若函数
在区间
上为增函数,求
的取值范围;
(3)若对于
,不等式
在
上恒成立, 求
的取值范围.


(1) 若函数



(2) 若函数



(3)若对于




已知关于x的函数
,其导函数
.
(1)如果函数
在
处有极值
,试确定b、c的值;
(2)设当
时,函数
的图象上任一点P处的切线斜率为k,若
,求实数b的取值范围.


(1)如果函数



(2)设当



已知函数f(x)
(1)当0≤a≤4时,试判断函数f(x)的单调性;
(2)当a=0时,对于任意的x∈(1,t],恒有tf(x)﹣xf(t)≥f(x)﹣f(t),求t的最大值.

(1)当0≤a≤4时,试判断函数f(x)的单调性;
(2)当a=0时,对于任意的x∈(1,t],恒有tf(x)﹣xf(t)≥f(x)﹣f(t),求t的最大值.
已知f(x)=xlnx,g(x)=x3+ax2﹣x+2
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切的x,2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切的x,2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
(本题满分12分)设函数
(
),
.
(1) 将函数
图象向右平移一个单位即可得到函数
的图象,试写出
的解析式及值域;
(2) 关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.



(1) 将函数



(2) 关于



(3)对于函数












