- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为(0,+
),若
在(0,+
)上为增函数,则称
为“一阶比增函数”;若
在(0,+
)上为增函数,则称
为”二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为
1,所有“二阶比增函数”组成的集合记为
2.
(1)已知函数
,若
∈
1,求实数
的取值范围,并证明你的结论;
(2)已知0<a<b<c,
∈
1且
的部分函数值由下表给出:
求证:
;
(3)定义集合
,且存在常数k,使得任取x∈(0,+
),
<k},请问:是否存在常数M,使得任意的
∈
,任意的x∈(0,+
),有
<M成立?若存在,求出M的最小值;若不存在,说明理由.










(1)已知函数




(2)已知0<a<b<c,



![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | t | 4 |
求证:

(3)定义集合







已知函数
.
(1)当
时,求函数
的单调区间;
(2)若函数
有两个极值点
,且
,求证
;
(3)设
,对于任意
时,总存在
,使
成立,求实数
的取值范围.

(1)当


(2)若函数




(3)设




