- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
.
(Ⅰ)当x≥0时,f(x)≤h(x)恒成立,求a的取值范围;
(Ⅱ)当x<0时,研究函数F(x)=h(x)﹣g(x)的零点个数;
(Ⅲ)求证:
(参考数据:ln1.1≈0.0953).



(Ⅰ)当x≥0时,f(x)≤h(x)恒成立,求a的取值范围;
(Ⅱ)当x<0时,研究函数F(x)=h(x)﹣g(x)的零点个数;
(Ⅲ)求证:

已知函数
;
(1)若函数
在
上为增函数,求正实数
的取值范围;
(2)当
时,求函数
在
上的最值;
(3)当
时,对大于1的任意正整数
,试比较
与
的大小关系.

(1)若函数



(2)当



(3)当




已知函数
与
(
为常数)的图象在它们与坐标轴交点处的切线互相平行.
(1)若关于
的不等式
有解,求实数
的取值范围;
(2)对于函数
和
公共定义域内的任意实数
,我们把
的值称为两函数在
处的“瞬间距离”.则函数
与
的所有“瞬间距离”是否都大于2?请加以证明.



(1)若关于



(2)对于函数







已知函数
(其中
为实数)的图象在
处的切线与
轴平行,
.且对任意
,存在
,使得
,则实数
的最小值(其中
为自然对数的底数)为( )










A.![]() | B.![]() | C.1 | D.2 |
已知函数
,函数
的图像为直线
.
(Ⅰ)当
时,若函数
的图像永远在直线
下方,求实数
的取值范围;
(Ⅱ)当
时,若直线
与函数
的图像的有两个不同的交点
,线段
的中点为
,求证:
.



(Ⅰ)当




(Ⅱ)当








已知函数
,
,
.
(1)设
.①若
,则
,
满足什么条件时,曲线
与
在x=0处总有相同的切线?②当a=1时,求函数
单调区间;
(2)若集合
为空集,求ab的最大值.



(1)设







(2)若集合

设函数f(x)=1-x2+ln(x+1).
(1)求函数f(x)的单调区间;
(2)若不等式f(x)>
-x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.
(1)求函数f(x)的单调区间;
(2)若不等式f(x)>
