- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- + 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中实数
.
(1)讨论函数
的单调性;
(2)设定义在
上的函数
在点
处的切线的方程为
,当
时,若
在
内恒成立,则称
为
的“类对称点”当
时,试问
是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.


(1)讨论函数

(2)设定义在











已知函数f(x)=x2+2x+alnx(a∈R).
(1)当a=-4时,求f(x)的最小值;
(2)若不等式af(x)≤(a+l)x2+ ax恒成立,求实数a的取值范围.
(1)当a=-4时,求f(x)的最小值;
(2)若不等式af(x)≤(a+l)x2+ ax恒成立,求实数a的取值范围.