- 集合与常用逻辑用语
- 函数与导数
- + 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(导学号:05856334)
已知函数f(x)=ln x+ax2+1.
(Ⅰ)当a=-1时,求函数f(x)的极值;
(Ⅱ)当a>0时,证明:存在正实数λ,使得
λ恒成立.
已知函数f(x)=ln x+ax2+1.
(Ⅰ)当a=-1时,求函数f(x)的极值;
(Ⅱ)当a>0时,证明:存在正实数λ,使得

已知函数f(x)=ax+ln(x-1),其中a为常数.
(1)试讨论f(x)的单调区间;
(2)当a=
时,存在x使得不等式
成立,求b的取值范围.
(1)试讨论f(x)的单调区间;
(2)当a=


已知函数f(x)的导函数f′(x),且对任意x>0,都有f′(x)>
.
(1)判断函数F(x)=
在(0,+∞)上的单调性;
(2)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(3)请将(2)中结论推广到一般形式,并证明你所推广的结论.

(1)判断函数F(x)=

(2)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(3)请将(2)中结论推广到一般形式,并证明你所推广的结论.
已知函数
,其中
为常数,设
为自然对数的底数.
(1)当
时,求
的最大值;
(2)若
在区间
上的最大值为
,求
的值;
(3)设
,若
,对于任意的两个正实数
,证明:
.



(1)当


(2)若




(3)设



