- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
三角形面积
(
为三边长,
),又三角形可以看作是四边形的极端情形(即四边形的一边长退化为零).受其启发,请你写出圆内接四边形的面积公式:__________.



类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是 ( )
①各棱长相等,同一顶点上的任意两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等.
①各棱长相等,同一顶点上的任意两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等.
A.① | B.③ | C.①② | D..①②③ |
古希腊亚历山大时期的数学家怕普斯(Pappus, 约300~约350)在《数学汇编》第3卷中记载着一个定理:“如果同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于闭合图形面积乘以重心旋转所得周长的积”如图,半圆
的直径
,点
是该半圆弧的中点,那么运用帕普斯的上述定理可以求得,半圆弧与直径所围成的半圆面(阴影部分个含边界)的重心
位于对称轴
上,且满足
=__________.







我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底为1的梯形,且当实数
取
上的任意值时,直线
被图1和图2所截得的两线段长始终相等,则图1的面积为 ___________ .




在《九章算术》方田章圆田术(刘徽注)中指出:“割之弥细,所失弥之,割之又割,以至于不可割,则与圆周合体而无所失矣”注述中所用的割圆术是一种无限与有限转化思想.比如在
中“...”即代表无限次重复,但原数中有个定数
,这可以通过
确定出来
,类似地可得到:
__________.





如图1,在
中,
,
,
是垂足,则
,该结论称为射影定理.如图2,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比射影定理,可以得到结论:__________.














已知正三角形
的边长是
,若
是
内任意一点,那么
到三角形三边的距离之和是定值
.这是平面几何中一个命题,其证明常采用“面积法”.如图,设
到三边的距离分别是
、
、
,则
,
为正三角形
的高
,即
.运用类比法猜想,对于空间正四面体,存在什么类似结论,并用“体积法”证明.
















