刷题首页
题库
高中数学
题干
类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是 ( )
①各棱长相等,同一顶点上的任意两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等.
A.①
B.③
C.①②
D..①②③
上一题
下一题
0.99难度 单选题 更新时间:2018-04-20 02:15:10
答案(点此获取答案解析)
同类题1
我们知道:在长方形
中,如果设
,
,那么长方形
的外接圆的半径
满足:
.类比上述结论,在长方体
中,如果设
,
,
,那么长方体
的外接球的半径
满足的关系式是( )
A.
B.
C.
D.
同类题2
已知结论:“正三角形中心到顶点的距离是到对边中点距离的2倍”.若把该结论推广到空间,则有结论:
同类题3
如图(1)有面积关系
,则图(2)有体积关系
___________
.
同类题4
已知三角形的三边分别为
,内切圆的半径为
,则三角形的面积为
;四面体的四个面的面积分别为
,内切球的半径为
.类比三角形的面积可得四面体的体积为__________.
同类题5
二维空间中圆的一维测度(周长)
,二维测度(面积)
,观察发现
;三维空间中球的二维测度(表面积)
,三维测度(体积)
,观察发现
.已知四维空间中“超球”的三维测度
,猜想其四维测度
________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比