- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- + 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下面推理是类比推理的是( )
A.两条直线平行,则同旁内角互补,若![]() ![]() ![]() |
B.某校高二有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此推测各班都超过50位团员 |
C.由平面三角形的面积![]() ![]() ![]() ![]() ![]() ![]() |
D.一切偶数能被2整除,![]() ![]() |
命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )

A.![]() | B.![]() | C.![]() | D.![]() |
祖暅原理“幂势既同,则积不容异”中的“幂”指面积,“势”即是高,意思是:若两个等高的几何体在所有等高处的水平截面的面积恒等,则这两几何体的体积相等.设夹在两个平行平面之间的几何体的体积分别为
,它们被平行于这两个平面的任意平面截得的两个截面面积分别为
,则“
恒成立”是“
”的( )




A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
已知三角形的三边分别为
,内切圆的半径为
,则三角形的面积为
;四面体的四个面的面积分别为
,内切球的半径为
.类比三角形的面积可得四面体的体积为__________.





命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )

A.![]() | B.![]() | C.![]() | D.![]() |
下面推理是类比推理的是( )
A.两条直线平行,则同旁内角互补,若![]() ![]() ![]() |
B.某校高二有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此推测各班都超过50位团员 |
C.由平面三角形的面积![]() ![]() ![]() ![]() ![]() ![]() |
D.一切偶数能被2整除,![]() ![]() |
如图所示,在三棱锥S﹣ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA,SB,SC和底面ABC所成的角分别为α1,α2,α3,△SBC,△SAC,△SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间图形的一个猜想是_________________.

三角形与四面体有下列相似性质:
(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.
(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形的三个顶点的连线所围成的图形.
通过类比推理,根据三角形的性质推测空间四面体的性质,并填写下表:
(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.
(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形的三个顶点的连线所围成的图形.
通过类比推理,根据三角形的性质推测空间四面体的性质,并填写下表:
三角形 | 四面体 |
三角形的两边之和大于第三边 | |
三角形的中位线的长等于第三边长的一半,且平行于第三边 | |
三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心 | |