- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理
- + 类比推理
- 类比推理概念辨析
- 圆锥曲线中的类比推理
- 等差、等比数列中的类比推理
- 平面与空间中的类比
- 运算法则的类比
- 解题方法的类比
- 其他类比
- 合情推理概念辨析
- 演绎推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国古代数学名著《九章算术》的论割圆术中:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程。比如在表达式
中“…”即代表无数次重复,但原式却是个定值,它可以通过方程
求得
.类比上述过程,则
( )




A.6 | B.![]() | C.3 | D.![]() |
设
的三边长分别为
,
,
,面积为
,内切圆半径为
,则
.类比这个结论可知:四面体
的四个面的面积分别为
,
,
,
,体积为
,内切球半径为
,则
( )















A.![]() | B.![]() |
C.![]() | D.![]() |
下列类比推理中,得到的结论正确的是( )
A.把长方体与长方形类比,则有长方体的对角线平方等于长、宽、高的平方和 |
B.把![]() ![]() ![]() |
C.向量![]() ![]() ![]() ![]() |
D.把![]() ![]() ![]() |
已知椭圆
:
,其焦距为
,若
,则称椭圆
为“黄金椭圆”.黄金椭圆有如下性质:“黄金椭圆”的左、右焦点分别是
,
,以
,
,
,
为顶点的菱形
的内切圆过焦点
,
.
(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;
(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.














(1)类比“黄金椭圆”的定义,试写出“黄金双曲线”的定义;
(2)类比“黄金椭圆”的性质,试写出“黄金双曲线”的性质,并加以证明.
中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行计算,算筹的摆放形式有横纵两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推.例如4266用算筹表示就是
,则8771用算筹可表示为( )



A.![]() | B.![]() | C.![]() | D.![]() |
在工程技术中,常用到双曲正弦函数
和双曲余弦函数
其实双曲正弦函数和双曲余弦函数与我们学过的正弦函数和余弦函数相类似,比如关于余弦函数有
成立,而关于双曲余弦函数满足ch(x+y)=ch xch y+sh xsh y.请你类比此关系式,写出关于双曲正弦函数、双曲余弦函数的一个新公式_____ .



下列是关于复数的类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则
②由实数绝对值的性质
类比得到复数z的性质
③由“已知
,若
则
”类比得“已知
,若
,则
”
④由向量加法的几何意义可以类比得到复数加法的几何意义
其中推理结论正确的是 _____________
①复数的加减法运算可以类比多项式的加减法运算法则
②由实数绝对值的性质


③由“已知






④由向量加法的几何意义可以类比得到复数加法的几何意义
其中推理结论正确的是 _____________
下面使用类比推理,得到的结论正确的是( )
A.直线a,b,c,若a//b,b//c,则a//c.类比推出:向量![]() ![]() ![]() |
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a//b.类比推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a//b. |
C.以点![]() ![]() ![]() ![]() ![]() ![]() |
D.实数![]() ![]() ![]() ![]() ![]() ![]() |