刷题首页
题库
高中数学
题干
若三角形的周长为
、内切圆半径为
、面积为
,则有
.根据类比思想,若四面体的表面积为
、内切球半径为
、体积为
,则有
=________.
上一题
下一题
0.99难度 填空题 更新时间:2018-06-04 08:37:33
答案(点此获取答案解析)
同类题1
已知三角形的三边分别为
,内切圆的半径为
,则三角形的面积为
;四面体的四个面的面积分别为
,内切球的半径为
.类比三角形的面积可得四面体的体积为()
A.
B.
C.
D.
同类题2
在平面几何里有射影定理:“设
的两边
,
是
点在
边上的射影,则
”扩展到空间,若三棱锥
的三个侧面
、
、
两两互相垂直,点
是
在底面
上的射影,且
在
内,类比平面上三角形的射影定理,
、
、
三者的面积关系是
___________
.
同类题3
在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的
______
倍
同类题4
先解答(1),再通过类比解答(2):
已知正三角形的边长为
,求它的内切圆的半径
;
已知正四面体的棱长为
,求它的内切球的半径
.
同类题5
给出下面四个推理:
①由“若
是实数,则
”推广到复数中,则有“若
是复数,则
”;
②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;
③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;
④由“直角坐标系中两点
、
的中点坐标为
”类比推出“极坐标系中两点
、
的中点坐标为
”.
其中,推理得到的结论是正确的个数有( )个
A.1
B.2
C.3
D.4
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比